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Symmetric power sum expansions of the eigenvalues of 
generalised Casimir operators of semi-simple Lie groups 
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+ Department of Mathematics, Monash University, Victoria 3 168, Australia 
f Mathematics Department, The University of Auckland, New Zealand 

Received 30 November 1979, in final form 4 February 1980 

Abstract. A formula due to Okubo for the eigenvalues of generalised Casimir operators of 
semi-simple Lie groups is used to derive an explicit expression for these eigenvalues. Full 
use is made of the Weyl symmetry group and it is shown that this expression may be cast in 
the form of a symmetric power sum expansion. Expansions are derived for operators of 
order p constructed using the defining representation of each simple Lie group for all p < 8. 
The results are in accord with the known facts regarding a complete set of algebraically 
independent operators and yield algebraic relations amongst those which are not indepen- 
dent. The expansions for the orthogonal and symplectic groups are a distinct improvement 
upon those obtained earlier, whilst those for the exceptional groups are the first of their 
kind. 

1. Introduction 

Casimir (1931) constructed an operator C2 which commutes with all the generators of a 
compact semi-simple Lie group. This operator is of second order in the generators. 
Using the structure constants of the corresponding Lie algebra, Racah (1951) con- 
structed invariant operators C, of arbitrary order, p ,  in the generators. Gruber and 
O’Raifeartaigh (1964) made a further generalisation and defined invariants I,” involv- 
ing the characters of products of generators in irreducible representations, p, of the Lie 
group. This generalisation is such that in the case for which p is the adjoint or regular 
representation, 4, I,” is essentially C,. A general expression for the eigenvalue C2(A) 
of the second-order Casimir operator C2 in any irreducible representation A of a 
semi-simple Lie group was derived by Racah (1950). This formula expresses Cz(A) 
explicitly in terms of the highest weight vector labelling the irreducible representation, 
and the derivation made use of the canonical Cartan-Weyl basis for the Lie algebra. In 
the case of the classical Lie groups it has been found convenient to use a Gelfand- 
Okubo basis together with tensor operator methods. The work of Perelemov and 
Popov (1966a) led in the case of the unitary groups to an explicit formula for the 
eigenvalues of a set of generalised Casimir operators of arbitrary order. The simplest 
form of this result was given first by Popov and Perelemov (1967) and independently 
derived by Louck and Biedenharn (1970, p 2403) and Okubo (1975). In the case of the 
other classical groups the preliminary results of Perelemov and Popov (1966b) were 
followed up by Wong and Yeh (1975) and by Nwachuku and Rashid (1976) who gave 

5 Permanent address: Mathematics Department, The University, Southampton, England. 

0305-4470/80/072297 + 21$01.50 @ 1980 The Institute of Physics 2297 



2298 M JEnglefield and R C King 

explicit formulae for the eigenvalues of the Casimir operators of the orthogonal and 
symplectic groups. The result for the orthogonal group had previously been derived by 
Bracken and Green (1971). In all these cases the generalised Casimir operators were 
recognised by Popov and Perelemov (1968) to be nothing other than I ;  where w is the 
defining representation of the group. Through this recognition and an extension of 
their methods they were able to derive a preliminary result fsr the exceptional Lie 
group G2. 

An alternative approach to the problem was put forward by Agrawala and Belin- 
fante (1971) who derived a very remarkable formula for the eigenvalues of generalised 
Casimir operators I,” of the unitary group. This formula relates these eigenvalues 
directly to the eigenvalues of the second-order Casimir operator C,. This result 
appears to have gone unnoticed, but Edwards (1978) recently presented a similar 
approach to the evaluation of the eigenvalues of Casimir operators of the classical 
groups which proceeded via intermediate formulae for 1; (A)  and I t  (A)  which cor- 
respond exactly with the formulae of Agrawala and Belinfante. However even before 
this the required generalisation to the eigenvalues I,”@) of the operators I,” in the 
irreducible representation A of any semi-simple Lie group had been given by Okubo 
(1977). It is this formula which is exploited in this paper. 

Both Okubo (1977) and Edwards (1978) rederived very easily the results for the 
classical groups previously obtained by Popov and Perelemov (1967), Bracken and 
Green (1971) and Nwachuku and Rashid (1976). Okubo went further and applied his 
techniques to Gz, coming very close to the final simplification of the preliminary result 
for G2 due to Popov and Perelemov (1968). 

All of these results expressed the required eigenvalues I: (A)  rationally in terms of 
the components of the irreducible representation label A. In general the expression is in 
fact a sum of d ( p )  rational terms where d ( p )  is the dimension of the representation p. 
This contrasts strikingly with the formula for Cz(A) derived by Racah (1950) which 
essentially expressed C2(A) as the power sum &(A) ,  i.e. as a second-degree multinomial 
in the components of A. Attempts have been made, notably by Umezawa (1963, 
1964a, b) and Louck and Biedenharn (1970) to generalise this result of Racah’s by 
expressing higher-order operator eigenvalues in terms of power sums & ( A ) .  This 
proved to be difficult, although some preliminary results were obtained including a 
result appropriate to Gz calculated by Scheibling and Umezawa (1970). More recently 
Popov (1976) derived, using generating function methods, new expansions of the 
eigenvalues I,” ( A )  in terms of symmetric power sums in the case of the unitary groups. 
This work was extended to the orthogonal and symplectic groups by Nwachuku (1979) 
but the results obtained were not expressed in an ideal form, in that they did not make 
manifest relationships between eigenvalues of I :@) for various values of p .  The 
existence of such relationships is implied by the fact that any rank-k semi-simple Lie 
group possesses at most k algebraically independent Casimir invariants. The orders of 
a complete set of independent invariants were listed by Racah (1950) for each simple 
Lie group. They are reproduced here in table 1. 

In this paper the overwhelming power of the formula for I :  ( A )  due to Okubo (1977) 
is exploited, first to show that with an understanding of the modification rules appro- 
priate to irreducible representations of groups Okubo’s results for the classical groups 
can be extended without any difficulty to the case of all the exceptional groups. Secondly 
it is demonstrated that the resulting sum of rational terms may be re-expanded in terms 
of power sums & ( A )  and similar functions. Thirdly these expansions are obtained 
explicitly ir, the case of all operator eigenvalues I: ( A )  with p G 8 for each simple Lie 
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Table 1. The orders of a complete set of algebraically independent invariants I : .  

Group Order p 

Ak-SU(k+l)  
Bk -S0(2k + 1)  
ck -Sp(2k) 

G2 2, 6 
F4 2 ,6 ,  8, 12 
E6 
E7 
E8 

2, 3, . . . , k + 1 
2 ,4 ,  . . . , 2k 
2 , 4 , .  . . , 2 k  

Dk -S0(2k) 2 , 4  , . . . ,  2k-2, k 

2, 5 ,  6, 8 ,9 ,  12 
2,6,  8, 10, 12, 14, 18 
2, 8, 12, 14, 18, 20, 24, 30 

group. It is shown that these expansions exhibit the algebraic independence require- 
ments given by Racah. 

2. The Okubo formula 

Let Xi with i = 1,2,  . . . , N be the generators of a Lie algebra of dimension N defined by 

[xi, xi] = c fJk 

c!. =: - c ;  (2.2) 

c;.c; +cfc; +c;c ;  = 0. 

(2.1) 
where the structure constants satisfy 

and 

(2.3) 

(2.4) 

For such an algebra there exists a covariant, symmetric, tensor 
k i  

gil = c ijc Ik. 

If the Lie algebra is semi-simple this tensor is non-singular and can be used to define a 
contravariant, symmetric tensor such that 

gi'g'" = S?, (2.5) 

x' = g1"X,. (2.6) 

c, = gi"xixm = gi'xix' = c;cjkxixl. (2.7) 

c P = c!2. l i l l  c!3. 1212 * & .  p l p  X'lX'2 . , , X'P. (2.8) 

q5 : xi +D'(Xi),  (2.9) 

This may be used to define 

The second-order Casimir operator then takes the form 

One generalisation of this operator due to Racah (1951) is 

The adjoint or regular representation q5 of the Lie algebra is defined by the map 

where the matrix elements in this representation are 

o'(xi)kl = - C f k .  (2.10) 
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More generally any representation p of the Lie algebra is defined by a homomorphism 
onto a set of matrices: 

p : x j + D ” ( x j ) .  (2.11) 

This affords the further generalisation of the Casimir operator given by Gruber and 
O’Raifeartaigh (1964): 

I,” =Tr[D”(X,,)D”(Xj2) . . . D”(Xj,)]Xi1Xi2. . . Xip. (2.12) 

Clearly I $  = (-1)’C, and I? = Cz. 
It has been shown by Casimir (193 l ) ,  Racah (195 1) and Gruber and O’Raifeartaigh 

(1964) that Cz, C, and I,” are all invariant, commuting with all elements of the Lie 
group under consideration. Thus by Schur’s Lemmas, each of these operators is a 
multiple of the identity within each irreducible representation A of the Lie group. Their 
corresponding eigenvalues may be denoted by Cz(h), C,(A) and I,” (A)  respectively. 

The remarkable result derived by Okubo (1977) takes the form 

where d(A)  denotes the dimension of the irreducible representation A, and the 
Kronecker product multiplicities K I, are defined through the product reduction 
formula 

A x p = 1 Ki,v .  
Y 

(2.14) 

Before discussing the ease with which (2.13) leads both to explicit formulae for 
I,” (A) and to general results concerning the dependence of I,” (A) on the components of 
A ,  some trivial special cases should be noted: 

(2.15) 

(2.16) 

I ; ( A ) = o  for p a 1 (2.17) 

where 0 denotes the trivial identity representation of the group which is such that 
Do(Xj) = 0, d ( 0 )  = 1, C2(0) = 0, 0 x p = p for all p and A x 0 = A  for all A. For all 
semi-simple Lie groups IY (A)  = 0 since the corresponding representation matrices 
D”(Xj)  are traceless. In the case of the full unitary group U(N), however, the 
additional generator is essentially the unit matrix for every irreducible representation 
so that I? (A) = d ( p ) .  

3. The generalised Popov-Perelemov formula 

In order to make use of (2.13) it is necessary to evaluate only d(A) ,  C2(A) and K l w ,  The 
dimension of an irreducible representation A is given by the formula, due to Weyl 
(1926), 

(3.1) 
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where the product is taken over the positive roots r of the corresponding Lie algebra, A 
is the highest weight of the irreducible representation under consideration and 

a = $  r. 
r>O 

The eigenvalue of the second-order Casimir operator is known through the result 
due to Racah (1950): 

Cz(A) = (l/N+)A. (A + 25)  (3.3) 

with the normalisation factor, 

N+ = 4.M + 2 a ,  (3.4) 

fixed by noting that the definition (2.7) together with the nature of the adjoint 
representation matrices (2.10) imply that Cz(q5) = 1. 

The Kronecker product multiplicities may be found in many ways, but in order to 
derive general results it is useful to consider the method due to Racah (1964) which 
depends crucially on the symmetry group W, introduced by Weyl (1926), of the 
particular Lie algebra in question. This is the symmetry group of the root diagram, 
whose elements, S, are generated by reflections, S,, in the hyperplanes perpendicular to 
the roots r :  

(3.5) 

An element S of W is said to have parity (-1)"" which is +l or -1 according as the 
number of such reflections S,  generating S is even or odd respectively. With this 
notation, the character formula due to Weyl (1926), from which (3.1) is derived, is 

where 8 is a set of real class parameters. This may be expanded in the form 

xA(0) = M t  eiwoe 
W 

where MA, is the multiplicity of the weight w in the representation A. 
The Weyl symmetry of (3.6) is such that 

(3.6) 

(3.7) 

X s ( * + s ) - s  (e) = (-i)"Sx*(e) (3.8) 

M i w  =MA, (3.9) 

and 

for all S in W. It is then straightforward to show, following Racah (1964), that 

KIw = 1 (-1)""M: (3.10) 
SEW 

where 

w = S ( v + S ) - A  -6. (3.1 1)  
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The equivalence relation (3.8) between irreducible representations labelled by A and by 
S(A + S ) - S  is such that (3.11) implies 

(3.12) d(v) = (--l)“”d(A i- w). 
Moreover (3.5) is simply a reflection for which 

(SU) . (Sv)  = U.0, (3.13) 

for any vectors U and v. 
It is then easy to see that (3.3) and (3.11) lead to the result 

Cz(v) = C& + w). (3.14) 

The identities (3.10), (3.12) and (3.14) associated with (3.11) may be incorporated 
in (2.13). That the resulting summations over Y and S may be replaced by a single 
summation over all weights w is implied by Speiser (1964) and relies for its validity on 
two observations. Firstly each contribution to K,”, arises from some weight w for 
which the corresponding transformation S in (3.11) is unique. Secondly, although the 
summation over all weights w includes additional terms for which no element S exists 
for any v in (3.11)$ in these cases d ( A  + w )  = 0 so that their inclusion in the final sum 
makes no difference to its value. 

Incorporation of (3.10), (3.12) and (3.14) in (2.13) then yields 

(3.15) 

Some cancellations between the numerator and denominator may be effected by 
noting that 

d ( A  + w )  r . (A  + w + S )  
d ( A )  $0 r . ( A + S )  ’ 

r .w#O 

(3.16) 

Furthermore it is known (Racah 1964) that if w is a weight of the representation p and 
r .  w Z 0 then v is also a weight of p where 

u = S r w = w - 2  - r. i y;rr) 

Eliminating r in favour of v gives 

d ( A  + w )  (W - v ) . ( A  + S ) + ; ( W  - u ) . ( w - U )  
(W -v).(A + S )  - n  d ( A )  u=s,w 

(3.17) 

(3.18) 

where the product is taken over all those weights U obtained from w by means of a single 
Weyl reflection. Making use of this result and (3.3) in (3.15) then gives 

(3.19) 

where 
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whilst 
1 

( T " W  = z ( w  -U).(W -U). (3.22) 

This formula (3.19) represents the generalisation to any semi-simple Lie group of 
the results obtained previously for the classical groups in the case p = o or 3, the 
contragradient of the defining representation, by Popov and Perelemov (1967), Louck 
and Biedenharn (1970), Bracken and Green (197¶), Okubo (1975), Nwachuku and 
Rashid (1976) and rederived using the present methods by Okubo (1977) and Edwards 
(1978). It should be noted that the result is a sum of rational terms, each of which 
involves a denominator consisting of a number of factors. The total number of factors in 
each term is given by the number of roots r which are not perpendicular to a particular 
fixed weight w. 

4. Weyl symmetry properties 

Whilst the result of the previous section is extremely powerful, its use depends upon a 
knowledge of both the weight multiplicities M z  and the roots r. Their introduction 
serves to eliminate the need for determining the Kronecker product multiplicities K i p  
by other methods. Although this is helpful the final result has two defects. Firstly the 
symmetry of the result under the action of the Weyl group elements is not made 
manifest and secondly the formula is still, even with some cancellations made, rational 
rather than polynomial in the components of A. That this can be remedied may be 
shown by expressing all the results in terms of the vector 

I = A + S  (4.1) 

on which the Weyl group elements S act, as in the character formula (3 .6 ) ,  and through 
which the dependence upon A can be implicitly expressed. 

To this end all the quantities d ( A ) ,  Cz(A), I," (A),  p , ( A )  and ~ ~ ( 0 )  will be denoted 
throughout this section by d(Z),  Cz(I), I," ( I ) , p , ( I )  and X ' ( 0 )  respectively. No confusion 
should arise and in this form it is easy to express the Weyl group action. 

Thus, for example, 

Cz(f) 5 Cz(A)  (l/N+)A (A + 26) 

= (l/N&)[(A + 8 ) .  (A -t- 6) - S .  S ]  = (l/N+)(Z. I - S. 6), (4.2) 

so that directly from (3.13) 

CZ(SI) = Cz(I). (4.3) 

Similarly (3.8) implies 

Xs ' (e )  = (-n)"Sx'(e), (4.4) 

and hence 

d(SI)  = ( - l ) * l s d ( l ) .  (4.5) 

In order to make manifest the Weyl symmetry of I," (A)  it is necessary to return to 
(3.15) and to consider the subsets of weights of p, each consisting of a set of weights 
{ w  : Sw = K with S E W} such that K is the highest weight of the set, i.e. a dominant 
weight. The possible values of K are precisely those of the irreducible representation 
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labels: hence the use of a Greek letter. By virtue of the Weyl symmetry, if w is a weight 
in such a set, 

M t  = Mg-1, = ML for all S E  W. (4.6) 

d ( A  + W )  3 d(I  + W )  = d ( l  + S - ' K ) =  ( - l ) " s d ( S l + K )  (4.7) 

Furthermore in (3.15) 

and 

d ( A )  E d ( I )  = (-1)'" d(SI ) .  

p w ( A ) = p w ( I )  = p s - L ( I )  = - w .  I + i ( p .  p + 2 p .  s - w .  w )  

(4.8) 

Finally 

= - (Sw)  . ( S I )  + 3(p. p + 2p . s - w .  w ) 

= - K .  (SI )  + i ( p .  p + 2 p .  6 - K .  K )  = p K ( S l ) .  

Hence 

(4.9) 

(4.10) 

where IW,I = I{S : SK = K, S E W}l is the number of elements of the Weyl group leaving 
K invariant. 

This formula manifests the Weyl symmetry of the generalised Casimir operator 
eigenvalues: 

(4.11) I," ( S I )  = I:: ( I ) .  
Moreover the dependence upon I arises from terms of the form 

1 
- E ( - l ) " ' ( ~ .  S I ) ' ~ ( S I + K )  
d ( l )  S E W  

(4.12) 

where use has been made of (4.5) and (4.9) together with a binomial expansion of 
[pK(S1)IP .  By virtue of (3.1) the denominator is factorised into terms of the form ( r .  I )  
for each root r. That each such factor appears in the numerator may be seen by noting 
that 

1 ( - 1 ) " " [ ~ .  ( S I ) ] ' ~ ( S I + K ) =  1 [ ( S K ) .  Z l ' d ( l + S ~ )  
SEW SEW 

where the action of S on I has been replaced by the action of S-l on K, with the 
summation variable subsequently changed from S-' back to S for convenience. This 
expression may then be written in the form 

{[(TK) . I ] 'd ( l+ TK) +[ (S ,TK) .  l] 'd( l+S,TK))  
TEWIUS.} 

by making use of the coset decomposition of W with respect to the subgroup {I, S,}  of 
order two associated with any positive root r. The elements, T, are the corresponding 
coset representatives. Using (3.13) and (4.5) then yields 

1 
TEWI~I,S,J 

{[( TK) . I]' d ( l  + TK) - [(TK) . S,I]" d(S,I + TK)}. (4.13) 
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This expression vanishes identically if ( I .  r )  = 0 since in such a case 

1 .  r 
S,I = I - 2( -)r r .  r = I ,  (4.14) 

Thus the polynomial structure guarantees, as required, that this numerator contains 
( r  . I )  as a factor. Therefore each term (4.12) appearing in the expansion of (4.10) must 
be simply a polynomial in the components of I which from (4.1 1) is seen to be symmetric 
under the action of the Weyl group on 1. 

This structure is illustrated in the case of the group G2 in the next section and is used 
to simplify the calculation of all generalised Casimir operator eigenvalues in 0 6 .  Before 
proceeding to this, two special terms in (4.10) will be discussed. Firstly if K = 0 then 
clearly IW,I = /WO/ = /W/ whilst p,(S1) = po(SI) = i p .  (p  + 26) = 3N+C2(p). Secondly if 
K = p then p,(SI) = p,(SI) = p . (-SI + 6). These two results make it very easy to cope 
with all invariants 1; (A)  in cases for which p contains only one non-zero dominant 
weight K = p. This is true for the defining representation o and its contragradient &j of 
any semi-simple Lie group or of U(N), for the adjoint representations (b of U(k), 
SU(k+l) ,  S0(2k), E6, E7 and E8, for the fundamental representations {l”} of 
SU(k + 1) and U(k + 1) with m = 1,2,  . . . , k,  for the representation (1’) of Sp(2k), and 
for the spin representations A of SO(2k + 1) and A* of SO(2k) .  

5. Application to Gz 

In the case of the exceptional Lie group G2 it is simplest to choose p to be the defining 
seven-dimensional representation o = [l, 01, where the notation of King and Qubanchi 
(1978) has been adopted, which conforms with that of Wybourne (1970, p 46). The 
required Kronecker product is 

[Pl, P21 x [I, 01 = [Pl, P2l+[P1+ 1, P21+[P1- 1, P 2 +  11 

+bl, P2- l I+ [P l -  1, P21+[P1+ 1, P 2 -  11+[P1, P2+ 11, 

[VI, v2] = -[ v2 - 1, v1+ 11 = -[ v1+ v2 + 1, -vz - 21. 

(5.1) 

(5.2) 

subject where necessary to the modification rules or equivalence relations 

The dimension formula and the expression for the eigenvalues of C2 are 

d[vl, v2] = (1/5!)(2~1+ v2 + 5 ) (  v i +  2v2 + 4)(vl+ v2 + 3)(Y1- V 2  + 1)(v1+ 2)(v2 + 1) 
(5.3) 

These both remain valid under the modifications corresponding to (5.2), which are 
themselves determined by the action of the Weyl group. 

$’O’[PI, PZI   PI, PzI(-~)’ + d[pi + 1, pzI(2~1 + p d P  

Hence from the formula (2.13), due to Okubo (1977), 

+ d[pi - 1, PZ + 11(-~1 f ~ z - 6 ) ’  +  PI, ~2 - ll(-pi -2~2-9)’ 

+ d h -  1, p21(-2p1 - p 2 -  10)’ +d[Pl+ 1, p2- lI(P1 -p2-4) ’  

+ d b i ,  P Z  + 1X~1 + 2 ~ 2 -  1)’I/d[pi, ~2124’. ( 5 . 5 )  
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Whilst this formula is very easy to use in conjunction with (5.3) it does not make 
manifest the Weyl symmetry. This is a result of the adoption of the labels [PI, p2] to 
specify the irreducible representations of GZ. It is more convenient, as stressed in the 
previous section, to work in terms of the vector 1. This requires first the identification of 
the root space. Although GZ is of rank two it is helpful to embed the root space in a 
three-dimensional Euclidean space. In terms of mutually orthogonal unit vectors el ,  e2, 
e3,  the positive root vectors are el - e2, e l  - e3, e2 - e3, 3(2e1- e2 -- e3), ?(el - 2e2 + e3) 
and $(el i- e2 - 2e3), so that 6 = f ( 5 e l  - e2 - 4e3). The highest weight labelling scheme 
€or irreducible representations is then such that h = ( A I ,  A2, A31 with A 1  + A Z  + A 3  = 0, 
whilst both A 2  - A 3  and $(A - 2A2 + A 3 )  are non-negative integers. The relationship 
between this notation and the labels [pl, p2]  used earlier and the labels (ml ,  m2) of 
Okubo (1977) is such that 

1 1 

A 1  =f(2pl+p2) =4(3m1+2mz) 

(5.6)  

sothatpl=Al-A2,p2=A2-A3, ml=Al+2A2, and m2=-3A2. Finally1 isintroduced 
in the usual way via (4.1) so that l l  = A 1  $9,  l 2  = A 2 - ?  and 13 = A3-3. 

5 1 4 

With this notation, 

illustrating the symmetry associated with the Weyl operations on Z which permute the 
components and change the sign of 1, as discussed by King and Qubanchi (1978).  

The formula (3.15) then yields 

whilst (3.19) takes the form 

With 

(5 .9)  

(5.10) 
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and 

U =  

0 0 0 0 0 0 0  
0 0 3 3 4 1 1  
0 3 0 3 1 4 1  
0 3 3 0 1 1 4  
0 4 1 1 0 3 3  
0 1 4 1 3 0 3  
0 1 1 4 3 3 0  

This formula is the direct analogue of the formula given by Qkubo (1977) for each of the 
classical Lie groups. It is the solution to the problem imposed implicitly by Popov and 
Perelemov (1968) who, for the group G2, gave the eigenvalues of I,” ( I )  as the sum of all 
the elements of the pth power of a square matrix having pi as its diagonal elements for 
i = l , 2  , . . . ,  7. 

In order to obtain the Weyl-symmetric polynomial expansion of I,” ( I )  it is most 
convenient to use (4.10). In the case ~ l .  = w = (3 ,  - f ,  -3 )  all the multiplicities are 1 and 
the sum is over just two values of K : namely K = ($, -$, -5) and K = (0, 0,O). This gives 

(5.11) 

where Sli = and the Weyl symmetry operations may be exhibited in the form 

Hence the sum in (5.1 1) gives an antisymmetric function of I ,  invariant under reflection. 
From the previous section, it contains a factor d ( l ) .  Since, from the explicit form (5.7), 
this factor is also symmetric and invariant under reflection, so is the quotient. Moreover 
these remarks apply to each term in a binomial expansion of (SI1 -5)” in powers of SI1, 
which is convenient for the explicit evaluation of the sum. Thus 

where A,(I) = Aq(- - f )  is a symmetric polynomial in 11, l2  and l3  of degree at most q. In 
the relevant three-dimensional space A,(I) can be expressed in terms of the power sum 
symmetric functions 

um = 1;“ +r,” +r;” with m = 0, 1 ,2 ,3 .  (5.14) 

For these functions the constraint l1 f l2  + 13 = 0 is the condition u1 = 0 and implies 

can appear, so the appropriate complete set of symmetric functions is formed from uo, 
u2 and either u: or ( 7 6 .  

further that u4 = $U: and U6 = ju3 1 2  + &az. 1 3  Since A,(I) = A,(-Z), only even powers of u3 
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It is found that 

Ao(Z) = 6 Ai(Z)=12 Az(I) = 2(0.2 + 5 )  

A3(Z) = (540.2 + 4O)/9 

A5(Z) = (900.2” + 1 0 0 ~ 2  +4)/27 A6(1)= (360.6+750.; +20~2)/18.  (5.15) 

Using these results in (5.11), after the binomial expansion of ( S l l - s ) p  has been 
effected, gives with the notation Ip = I: (I) 

A4(I) = (90.2” + 60a2 + 10)/9 

Io = 7 I1 = 0 1 2  = ( 3 ~ ,  - 14)/96 

I3 = -12/4 1 4  = (241: + 712)/96 I 5  = (-3601: - 55I2)/2304 (5.16) 

16 = (9720.6 + 60750.; - 39 9600.2 + 27 884)/127 401 984. 

Proceeding in the same way with p = 4 = Ell], the 14-dimensional adjoint 
representation of G2 yields for C, = (-1)’If ( I )  

co=14 c1=0  C2 = (30.2- 14)/24 

c3 = c2/4 C4 = (30C: + 11C2)/192 C, = (13x2” +5C2)/1152 (5.17) 

c6=(-37 9080.6+21870~: +47 38.50.: -1406 160~2+4333 044)/191 102 976, 

whilst in the case p = [20], the 27-dimensional representation, results for I ;  = ICo’ (I) 
are 
I; =27 I ;  = o  I ;  =3(3~2-14)/32 

I ;  = -IQ4 I: =(SI;’ +51;)/96 I; =-(44OIk2 - 15I;)/6912 (5.18) 

I ;  = (12 6 3 6 ~ 6 + 4 8 6 0 ~ :  + 6 0 7 5 ~ :  -780 840~2+2675 852)/42 467 328. 

These results immediately show that the two algebraically independent Casimir 
operators of Gz are of the second and sixth orders, as stated by Racah (1950) and 
confirmed by Scheibling and Umezawa (1970) and Okubo (1977). The result (5.16) 
also confirms the conclusion of Scheibling and Umezawa (1970) that I6 depends 
essentially upon the symmetric function 0.6, whilst the coefficients given here provide 
the precise nature of this dependence. 

That higher-order invariants give rise to no further algebraically independent 
invariants may also be tested. For example the Iist (5.16) may be extended to give 

17 = (-1202 688I6+ 12 9601; +57 7801; +704112)/995 328 
and 
Ig=(14 681 088I6+10616832I6I2-414720I~ 

- 1054 OSOI: -975 7201; - 105 O07I2)/15 925 248, 

indicating the expected dependence upon I2 and Is. 
The argument given after equation (5.13), showing that I; is a function of u2 and 

0.6, applies equally well to I,” for any p. Thus there are only two independent 
invariants. The factoring of d(Z) may also be deduced without appealing to the previous 
section. Application of (5.12) always gives a function which is antisymmetric and 
invariant under reflection, so for any multinomial f ( Z ) ,  

1 (-l)“”f(I) = (11 - b ) ( ~ z -  /3)(13 - li)g(l) 
SEW 
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where g is symmetric and changes sign on reflection. When g is expressed in terms of 
the elementary symmetric functions, al = 0 can be eliminated and then the reflection 
property requires it to be odd in a3. Hence g has the factor as(l)=111213= 
-(ZZ + l 3 ) ( l 3  + l1)(Z1+ l z ) ,  and d(l) is a factor of ZsEw(-l)vsf(l), 

6. Expansions in terms of symmetric functions 

The work involved in expanding A,(I) for the group Gz may be avoided if use is made of 
the completeness of the power sum symmetric functions, the symmetry (4.11) and the 
polynomial nature of I,” ( I )  subsequently proved in § 4. These facts imply that 

where ap is a normalisation constant, &(k) is the required expansion coefficient, & ( I )  
is a polynomial in the components of I ,  and k is an index labelling a complete set of such 
linearly independent polynomials. The number of these, vP, depends not only upon the 
group in question but also upon the order p of the invariant. 

Given the required complete set & ( I ) ,  the corresponding value of rip, and rlP 
independent Kronecker products of the irreducible representation p with various 
representations A, it is a straightforward task to evaluate both I,” ( I )  and Lk(l) and hence 
obtain linear equations for the coefficients Pp(k). This procedure circumvents the 
generating function methods used by Popov (1976) and Nwachuku (1979) for the 
classical groups, and applies equally well to all semi-simple groups. 

The functions & ( I )  depend upon the group in question and must be invariant under 
the action of the corresponding Weyl group. The Weyl groups of SU(N), SO(2N + l ) ,  
Sp(2N) and SO(2N) all contain the symmetric group Z N  as a subgroup, whilst the Weyl 
groups of Gz, F4, E6, E7 and E8 contain the symmetric groups CJ, Z4, Zz x c6, and Z8 

respectively as subgroups. Thus, save in the case of E6, it is natural to use as basis 
functions symmetric polynomials such as the U, used in the case of GZ in the previous 
section. However the validity of (2.16) suggests that rather than using U, it is 
preferable to use 

d 

S,(I )  = (l? --a?), 
i = l  

so that if A = 0 then & ( I )  = 0. The parameter d is the dimension of the Euclidean space 
in which the root and weight spaces are embedded. In the case of SU(N), SO(2N + l ) ,  
Sp(2N) and SO(2N) d = N, whilst for GZ d = 3, for F4 d = 4 and for E6, E, and E8 d = 8. 
In general in such a d-dimensional space the only independent functions S,  ( I )  are those 
with m = 1,2 ,3 ,  , , . , d. However in the case of GZ with d = 3, as demonstrated in § 5 ,  it 
is convenient to use only m = 2 and m = 6. In the case of SO(2N + l ) ,  Sp(2N), S0(2N) ,  
F4 and &, since the Weyl group includes the inversion SI = - I ,  it is only necessary to use 
S,(I)  with m even, except that for both SO(2N) and E8 completeness is only achieved 
through the inclusion of the elementary symmetric function 

(6.3) 
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which also satisfies the constraint a d ( l )  = 0 if A = 0. This function of 1 arises through the 
action of the Weyl group on & ( I ) .  For the group E6, the fact that the corresponding 
Weyl group contains only E2 X & and not C s  as a subgroup implies that the required 
basis is provided by the functions 

2 

i = l  
P,(I)  = (17 - 8 7 )  with m = 1 , 2  

and 
8 

Q m ( I ) =  C (17 - 8 7 )  with m = 1 , 2 , .  . . , 6 ;  
i = 3  

however an alternative basis is preferable, making use of 
L 

Pm(I)  = 1 (17 - 8 7 )  with m = 1 , 2  
i = l  

and 
8 

S m ( I ) =  C ( 1 7 - 6 7 )  with m = 1 ,2 ,  . . . , 8 .  
i = l  

(6.4) 

The results obtained will necessarily depend upon the labelling scheme used for the 
irreducible representations of the groups. This, in turn, depends upon the ordering 
relations used to define highest weights and indeed upon the specification of the weight 
and root spaces. The notation adopted is given in table 2, where, for each group, d and6 
are given, along with the scale factor iV4 and the relationship between the label A and 
the more conventional irreducible representation labels p of Wybourne (1970) and 
Wybourne and Bowick (1977). From the data of table 2 it is then easy to determine I ,  
and hence to evaluate C2(I) since 

Table 3. SU(N)  expansion coefficients & ( k )  where (-4N)’Z; = Z k P p ( k ) L t .  

- 2 N 3 + 6 N  -5N4+ 10N2+3  - 9 N 5 +  10N3-  15N 
-2N2 - 9 - 9 N  5 N 4 - 3 0 N 2 - 7  

3N 5 N 2 + 5 N  5N3+25N 
- 1  -4N - 9 N 2 - 4  
- 1  -4N -9N2-7 

2 10N 
1 5N 

-2  
-1 

- 1  

-14Nb+42N2 +4 
14N5 - 9 N 3  - 42 

7 0 N 2 t  14 
- 14N3 - 24N 
- 14“ - 42 N 

2 8 N 2 + y  
1 4 N 2 + y  

-12N 
-6N 

2 
3 

-6N 
2 
2 
1 
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The dimensional formulae (3.1) appear explicitly for each group in question in, for 
example, the work of Dynkin (1957, p 358) and Wybourne (1974), or results may be 
gleaned for the classical groups either from an earlier tabulation by Wybourne (1970) or 
from the general formulae of El Samra and King (1979), and for the exceptional groups 
from the results of Wybourne and Bowick (1977) and Wybourne (1979). These last two 
papers are also extremely useful as a source of Kronecker products of representations of 
the exceptional groups. Their results were not sufficient however to give, for all the 
groups, the necessary qp independent products even when p was taken to be the 
simplest representation w. In these cases the list of products was extended by making 
use of Racah's formula (3.10) along with the modification rules (3.9), checked dimen- 
sionally. Alternatively, a related technique was used, involving products in the classical 
subgroup maximally embedded in each exceptional group and the modification rules 
appropriate to the exceptional group. In this way for p = w sufficient products were 
evaluated to enable all the expansion coefficients &(k) of (6.1) to be found for p s 8. 
The results are gathered together in tables 3-9. 

As pointed out by Okubo (1977), the limitation to semi-simple Lie groups may be 
relaxed to cater for, in particular, the group U(N). Results appropriate to this group 
have been included for completeness in table 11 where, as in the table 10 for SU(N), an 
expansion has been made in terms of 

Table 4. SO(N), Sp(N) expansion coefficients &(k) (SO(N) upper sign, Sp(N) lower sign) 
where [-4(N *2)]"Z; = Pkp,(k)Lk. 

23s2 1 N T 2  T2N + 4  -2N3 * 4 N 2 + 4 N  T8 -5N4* 20N3 -20N2 T 8N+ 16 

2 9 ;  -1 -4N*5 
2's4 1 3 N F 4  5N2T14N+14  

2 7 ~ 6  1 

2 9 ~ ;  
2 9 ~ 8  

2'S4s2 

17 I t  

z3S2 -9N5* SON4 - 100N3 * 72N2 + 16N T 32 -14N6 * 98N5 -280N4* 392N3 -224N2 T 32N +64 
z5s4 5N3 T 24N2 + 58N 7 4 4  T14N3+ 112N2T212N+128 
2 9 :  -9N2*23N-18 -14N3 f 56N2 - 94N 56 
2 7 ~ 6  5 N T 6  14N2F34N +? 
2'Sqs2 -2 - 1 2 N i 1 4  
2 9 ~ :  - 2 

2 9 ~ 8  1 
3 
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Table 5. G2 expansion coefficients @,(k) where (-241’1; =zkPp(k)&.  

It I 3  1 4  15 1: h Is 

3 ’ s ~  2 12 84 660 2790 -31746 -1038678 
34s: 1 15 225/2 10512 -35 70512 

3 9 :  -5 -155 

L 

36s6 2 58 1062 

38s6s2 -! 
3%: -12 

Table 6. F4 expansion coefficients &(k) where 24(-36lPI,” = z k @ p ( k ) &  

~~~ ~ 

s2 1 9 102 1380 25 275 

s: 4 50 1650 
2’s4 -195 

2 4 ~ 6  1 
2’S4s2 -5 
s: 10 

583 608 14 373 636 

55 000 5226 49013 
56 744813 

-280 -42 70013 
500 73 60013 

-2 

- 10 920 -403 865 

3 
F 

-70 
70 

6 216 9936 552096 27598968 

42 120 
3 306 10 638 

-12 -2160 
10 1800 

-20 -3600 
-24 

15 
10 

-15480 -2786400 - 
694 836 144 

9856 080 
-347 185 440 

-1462 212 
-269 136 

197 190 
-448 560 

-5616 
3510 
2340 
-99 
-21 

-35 
Y 

-88 819 073 856 
-37 676 586 240 

1450 282 320 
-349 499 448 

-29 206 656 
17 187 120 

-48 677 760 
-648 576 

454 500 
303 000 
-27 180 

-5544 
4620 

-9240 
-120 

28 
56 
35 
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Table 8. E., expansion coefficients & ( k )  with (-721’1: = I k @ , ( k ) L k .  

\ 1; 13 1 4  1 5  1% 17 1; 
Lk 

2 3 2  12 216 504 143712 8444511 625459014 43148005353 
23S3 52 920 64 562 400 5260 424 400 
24S4 23 940 2920680 245966910 

2 3 5  1481 760 

26s4sz 30 3660 242 840 
29:.  20 2440 485 68013 

z4s; 6 312 4626 519 036 -58 368 524 

2 9 6  -48 -5856 -343 856 

2 9 :  -108 -15 496 
28s8 -240 
28s6s2 56 

28s24 70 
28sss3 112 

2%2 60 1800 70 560 3398 400 193 628 160 12 726 835 200 

2 4 ~ ;  36 3240 256 896 20 678 400 
24s4 

2 9 6  

28s8 
28s6sz 
28s: 

2%; 
zRa8 

26s4sz 
2”s: 30 5088 

z8S4s: 

830 257 643 520 
604 235 520 

1642493568 
833 280 

868 320 
-360 

336 
210 

-210 
10512 

20 160 

-1041 600 

with c = ( N  - 1)/2. This has the advantage of being such that, reverting to the usual 
notation @} for representations of both U(N) and SU(N), T,@} is independent of N. 
Thus tables 10 and 11 indicate quite properly the fact that IF (p) is linear in N. 

The N-dependence of the results for S O ( M )  and Sp(N) cannot be simplified by 
employing expansion functions (6.7) for differing values of c. However it should be 
stressed that the results expressed in table 4 are a considerable improvement on those 
tabulated by Nwachuku (1979) which involve functions S, different from those used 
here, and which are such that SJ, for example, is not independent of S2. It is these 
relationships between various S,  which must be used to demonstrate the result made 
obvious in table 4 that the independent invariants of SO(N) and Sp(N) are of order 
2 ,4 ,6 ,  . . . . Similarly Racah’s listing of orders of the independent invariants given here 
in table 1 is readily confirmed from the results of tables 3-9 for p =z 8. 
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Table 10. SU(N) expansion coefficients &(&) where (-4N)’Z; = Lk&(&)Lk.  Equation 
(6.7) defines T,,,. 

1 2  13 14 1 5  16 17 15 

1 - N + $  -qN+2 -2N+g -5N i 3 -3N+4 -2N + 4 

-$N+S - 5 N + v  - y N + 1 4  

I N  - 14 
T5 -&+? 
T3 T2 N - 1  -XN+?f r6 1 

-1 N - 4  7’4 T2 

T3 -1 N - 2  2N-$! s N - 5  5N-7 7 N - y  

- 4N-g $N-? 9 N - Y  T: 

1 -N+$ 

- 4N-2 T: -2 

T: z 

10 
T2 

T4 1 -N+$ 
1 

-2 

-1 N - 3  3N-7 

I 

1 

-1 N - 4  
1 
1 
1 

Table 11. U ( N )  expansion coefficients &(k) where (-4N)’Z; = Z k p p ( k ) L k .  Equation 
(6.7) defines T,. 

T1 N - 1  N - 1  
7-2 1 -N+;  - 

1 T: -2 
T3 -1 
T2 Tl 
T: 

N - 1  N - 1  
-$N+2 -2N+$ 
$ N - 1  N-’ 

1 - -N+$ 
N - 2  2N-$! 

1 
-6 

1 -Niz 
-1 
-2 

1 

-1 

N - 1  
-5N+3 

$N-2  
Y N - 5  
-$N + 

-5Ni-5 
N - 3  

BN-4 

4”-4 
- 
2 

N - 3  
1 
1 

1 

N - 1  
-3N+$ 

5N-7 
-$N + 7 

f N - 1  
- 5 N + y  

3 N - y  

2N __ 5 

$N+ 
f N  - f  

- 2  
3N-7 
-N+2 
-1v-t; 

1 
-2 
-5 

-N +; 
-1 
-1 

1 
-2 
- 

-1 
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It is interesting to note that all the independent invariants of order p C 8 are found 
merely by considering the defining representation w of each group, except in the case of 
SO(2N). In this particular case the missing invariant of order p = N is supplied by 
considering the irreducible spin representations, A,, whose generalised Casimir opera- 
tor eigenvalues depend upon (6.3). This same dependence upon (6.3) is found also in 
the case of E8 for the first independent Casimir operator beyond the second-order 
operator, namely I;, as indicated in table 9. In contrast to this, all independent 
invariants may not, in general, be found by considering the adjoint representation 4. 
This corresponds to the fact, pointed out by Racah (1951), that the eigenvalues of the 
operators C, defined by (2.8) do not provide a complete set of labels for irreducible 
representations of the corresponding Lie group, failing to distinguish between a 
representation and its contragredient. In the case of the groups SU(N) this has been 
discussed in detail by Biedenharn (1963) who, as an alternative to the generalisation 
from (2.8) to (2.12) and the subsequent use of the defining representation w ,  obtained a 
complete set of algebraically independent invariants through the consideration not only 
of the commutators (2.1) but also of the corresponding anticommutators. 
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